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FORMULATION OF A TWO-SCALE MODEL OF TURBULENCE

ROBERT RUBINSTEIN"

Abstract. A two-scale turbulence model is derived by averaging the two-point spectral evolution equa-

tion. In this model, tile inertial range energy transfer and the dissipation rate can be unequal. Tile model

is shown to reduce to a standard two-equation model in decaying turbulence.

Key words, multit)le-scale turbulence model

Subject classification. Fluid Mechanics

1. Introduction. Despite the remarkal)le success of tile two-equation turbulence model in predicting

many practically important turbulent flows, it has some important shortcomings. For example, the linear

eddy-viscosity relation between the Reynolds stress and the mean strain rate is inadequate in many problems;

nonlinear eddy viscosity models, algebraic models, and finally the Reynolds stress transport model [1], have

been developed in rest)onse to this t)roblem.

Whereas these models focus their attention on tile Reynolds stresses and leave tile two-equation model

itself basically intact, a complementary line of research [2], [3] ha_s attempted to improve tile two-equation

model by addressing tile over-simplification inherent in any description of turbulence by a single length-

scale. It lead to the fornmlation of multiple scale models of turbulence in which the transport equations

for turbulence kinetic energy and dissil)ation rate are each replaced by transport equations for the kinetic

energy and dissipation rate pertaining to a definite range of scales of motion.

Multiple scale modeling attemt)ts to treat the response of turbulence to changes in tile large-scale motion

more realistically than the two-equation model. Wherea.s the two-equation model assunms that the inertial

range can adjust instantaneously to changes at the large scales, multiple scale modeling allows time-delays

in this response and therel)y pernfits a more refined picture of the time dependence of turbulence.

A representative multil)le scale model is the model of Hanjali_, Launder, and Schiestel (HLS, [2]), which

takes tile form for homogeneous tnrbulence

(1.1)

]_p= P - (-p

Jet ---- ¢-p -- _:t

tv = Cpl q'P - Cv2_
kp ,_p

ft = t-_ll_ -- _Jt2 ktt
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In this model, the turbulent fluctuations are partitioned into two regions identified by the subscripts p

(production) and t (turbulence) of large- and small-scale fluctuations respectively. Otherwise, the standard

notation is used in Eq. (1.1): k denotes turbulence kinetic energy, e is the dissipation rate, P is t)roduction,

and Cvl , Cp2, Ctl, Ct2 are model constants. Modeling the behavior of different scales of motion abandons



tile strictlysingle-pointapproach;it attemptsa compromisebetweentwo-pointmodels,whichoffergreater
physicalfidelityat theexpenseofgreatercomputationalcomplexity,andsingle-pointmodeling.

Earlyresearchonthis typeof modelwasfrustratedbytheinevitableappearanceof a largenumberof
modelconstants for which calibrating experiments could not be readily identified; thus, Eq. (1.1) requires

four constants in place of the two constants of the comparable standard two-equation model. However,

interest in multiple scale models has recently been revived by the possibility that numerical simulations

c(luhl help identify tile model constants [4]. At the same time, new approaches to multiple scale modeling

based on two-t)oint models have been advanced [3], [5], [6] which promise to eliminate, or at least reduce,

the re(tuired empirical input.

The goal of the present work is to derive a two-scale model in which energy transfer and dissipation

can be distinct and satisfy different transport equations. Kolmogorov's principle of locality of inertial range

transfer [7] is used to separate these effects. Unlike the previous model of this type [6], the coefl'icients in

the present model are independent of Reynolds number.

Tim multiple-scale viewpoint permits a fresh derivation of the two-equation model [3], [5], [6]. The

two-equation model will be reconsidered from this viewI)oint. Then a two-scale model is derived in which

transfer through the large scales and tile dissipation rate can be unequal.

Multiple-scale effects are expected to be important in turbulent flows dominated by dise(tuilibrium

between large and small scales. When such effects are absent, as they are in tim standard self-similar flows

used to calibrate turbulence models, the multiple-scale must reduce to a single-scale model with a unique

similarity solution. This principle is applied to both tim HLS model and the proposed model in the ('ase

of decaying turbulence. Conditions are found which prevent the existence of more than one exponent for

power-law decay. In both cases, the condition is a simple inequality among the model constants.

The occurence of partitioned values of turi)ulence kinetic energy and dissilmtion rate naturally generates

many new possibilities in relating the Reynolds stress and the strain rate; however, this issue will not be

addressed in the present work.

2. The Two-equation Model as a Single-scale Model. The starting 1)oint is the isotrol)ic part of

the st)ectral evolution equation [9]

(2.1) /_(_) = T(g) + II(g) - D(_) +/)(g)

where E(t;) is the energy spectrum, T(g) is energy transfer spectrum, 1-I(a) is the production spectrum,

D(_) is the dissipation spectrum, and T)(a) represents diffusion effects. Only homogeneous turbulence will

be considered, so that T)(h:) -- 0. The dissipation speetruIn is defined by

(2.2) D(a) = v_E(K)

and closures nmst be provided for T(_) and l'I(_).

The integrated quantities are

(2.3)

o°¢_E(a)dg = k

o_ T(_)da = 0

o_¢ fl(g)dg = P

foo ¢ D(tc)d_ = e



The second relation expresses the conservation of energy by nonlinear interaction.

follows from integrating Eq. (2.1) over all wavemunbers. Using Eqs. (2.3),

(2.4) _: = P - e

Tile energy equation

This result is independent of the analytical form of E(_;) and II(t_), and of tile closure used to define T(h:).

To find a second equation, it will be necessary to introduce some specific assumptions. Tile simplest

steady solution of Eq. (2.1) is the Kolmo.qorov steady state defined by

(2.5)

corresponding to

0 , if t," _< _o
E(_:) = Ch-7_-'/as -'_/a if _o < _ _< _d

{} if _ _> _d

(2.6) T(_) = -T{6(_ - _o) - 6(_- _a)}

where 7- represents tile energy transfer through the inertial range. In Eqs. (2.5) (2.6), t% is tile integral

scale, and _d "_ (e/va) U4 is the Kolmogorov scale. To maintain a stead3, state, production must balance

transfer into the inertial range, and transfer out of the inertial range must t)alance viscous dissipation, so

that

(2.7) p = _ = 7-

More complex analytical forms for E(_) could be introduced, but this change adds nothing essential.

Now generalize Eq. (2.5) to the time-dependent case by letting e = e(t) and _;o = s0(t). For high

Reynolds nulnber turbulence, ignore the consequent evolution of t_a can be ignored. Assume that tile second

equality from Eq. (2.7), namely

(2.8) e = T

continues to apply. Since

(2.9)

it follows that

3 C e2/a_-2/a
/_= _ 4," o

(2.10) ]¢= CK(e l/a_o2/ae--e2/aNoa/aL;0)

but this equation does not lead to the desired second equation directly, because it contatins the new unknown

k0. We consider two inethods by which a second equation can be derived.

2.1. The method of Sehlestel. The problem is solved in [3] by postulating that

E

(2.11) ko o¢ --
E(_0)

which is equivalent, for a Kohnogorov spectruln, to

(2.12) /;o/h:o = 7e/k



Then Eqs. (2.10)-(2.12) give

2k i 2
(2.13) k = 57 + 5 _

which can t)e re-arranged as

_a__p 3 d
(2.14) i= 2k -(5 +7)_-

with a rather good value for C_1 and a value for C(2 which depends oil the choice of 7. This is essentially

Eq. (27) of [31.

2.2. The method of moments. It can reasonably be objected that by assuining the length-scale

equation Eq. (2.12) the problem has simply been transferred to another variable and therefore Eq. (2.14)

has not been derived, but simply postulated indirectly.

An interesting alternative has been suggested in [5], [6]: by taking another moment of the spectral

evolution equation Eq. (2.1), an additional equation is obtained and k0 (:an be eliminated between this

equation and Eq. (2.10). This implies a reduction of Eq. (2.1) to a finite-dimensional system by a Galerkin

approximation.

For example, multiply Eq. (2.1) by ,¢-1 and integrate. With the assmnptions Eqs. (2.5) (2.6),

(2.15)

_ k 3Ck-1/:_noS/3 i
_0 0

k 2k
- i

no 5 e_o

and

(2.16) fo '_ T(.) _ _d^" - + -- _ ---
K, 1¢0 /¢"d _0

To inake the calculation definite, assume for the production spectrum

(2.17)
0 ifn<no

1I (/_) = 4 (_ nel/3/'¢--7/3_'2....... iftCo<n<nd

0 if s: _>nd

where S is the mean strain rate. Eq. (2.17) is consistent with the usual two-equation inodel, since integration

over _; leads to

(2.18) P=Ct)¢l/ago4/3S2 4CDk2s2=c k2s.2
-9C'_. e e

which, for the values of inertial range constants recommeilded by Yakhot and Orszag [8] CD _ 0.5, CK _ 1.6,

gives

4 Ct) 4

(2.19) C. - 9 C_. _ 4--5o

With this choice,

(2.20)
fo°'C'dN H(N) _6D_1/31¢07/3S2 _ 4P-_- -- IN, 0



(2.22)

consequently,

Note that

(2.21) dt_ D(tQ 2/3-- _ vt_ d --_Re-l/2
, K

is negligible in the high Reynolds number limit.

Combining the results Eqs. (2.15), (2.16), (2.20), and (2.21),

1(_¢ 2 k_) e 4 P
_:0 g-7 '¢0 7 _0

53
(2.23) i = __ip

27k

with a value C¢1 = 15/14 which is somewhat too small, but also C_2 = 0.

The absence of a destruction term comes about because of the cancellation of J¢ and e in Eq. (2.22).

This cancellation proves to I)e independent of the order of the moment taken, provided of course that the

integrals converge at large h:.

The question then arises whether the result, of Eq. (2.16) might not depend strongly on the assumptions

nmde and whether inore generally, we should not obtain

/0(2.24) dn T(--KO -- CT--
/'¢ N, 0

with CT _ 1. But Eq. (2.16) is reproduced exactly if tile closure for T(_) given by Eq. (2.6) is replaced by

Leith diffusion closure for T(_) [9],

(2.25) T(_) = -el h-2_E(,¢) + c20h. K

with constants compatible with tile existence of Kohnogorov and equipartition spectra [9]. The evaluation

of the moment of order -1 has been proposed [5] for the EDQNM energy transDr Inodel.

To conclude, write the • transport equation in the forxn

(2.26) d = C¢, _P - (CT -- 1)

The values of C_l and CT are subjects for filture investigation.

2.3. The moment equation of order +2. It is natural to attempt to derive an equation for viscous

dissipation by multiplying Eq. (2.1) by ut_ '2 and integrating. As noted in [6], this approach has the very

attractive feature that tile divergences [10] of order Re U2 cancel, for

(2.27')

and

(2.28)
f0 °

- d_ _;2D(t¢) = __p_2/3_0/3

and the definition of _d shows that the right sides of Eqs. (2.27) and (2.28) can sum to zero. However,

/7(2.29) dt_ t,'/'-;2n(t_) ,_ l]•1/3S2h; 2/3

is of order Re -1/'" and the remaining contribution from the transfer terln, -uu,_e is of order Re -I Thus,

unless other contributions can be found, the right side of the molnent equation of order two vanishes in the

limit of infinite Re. Thus, although the moment equation of order -1 does not provide satisfactory model

constants, it generates a more satisfactory model h)rm than does the moment equation of order +2.



3. Multiple-scale Models. The simplest generalization of tileprevious single-scale model results from

from taking the piecewise-Kolmogorov spectrum

(3.1) El(n) = _ /3n-"/'_ for ni-i < n < ni with i > 1

and

(3.2) T(n) = - Z _i[5(n - ni-l) - 5(n - ni)]
l<i(n

Eq. (3.2) defines a shell model of turbulence, in which energy is transferred from each discrete region of scales

to the adjacent region of smaller scales. This picture greatly oversimplifies tile actual energy transfer process,

which is mediated by triad interactions and which permits t)oth forward and backward energy transfer and

transfer between non-adjacent regions. A more accurate description is given by two-point closures like DIA

and EDQNM (Laporta, 1995).

Set correspon(ting to Eq. (2.17),

(3.3) Hi(n) = _CD_/:_n-7/3S "'- for tci-i < n < ni

Then the nioments of order zero, obtained by integrating over tile regions _i-t < n < hi, give partial energy

equations

(3.4) ],'i=_i l-¢i+Pi-Di

where

.-, 1/3, -4/._ _ n_4/3)P_ = t_D(. i (l_i_ 1

(3.5) Di = 4t'CK(a_/3- n___4( 3 )

and by definition, _0 = 0. Unlike the single-scale energy equation Eq. (2.4), Eq. (3.4) depends on the special

hyt)otheses made in Eqs. (3.1) (3.2).

Eq. (3.1) implies

(3.6) ki = _t_h" i t i-1 -

from which differentiation in time gives

(3.7) ]q C/x._I/Z(N__L2(3 n_-2/3)(-i zw 2/3--5/3. fy 2/3--5/3.= -- -- (_K_i hi_ ! hi- 1 -b L_K(. i n i ni

As in the previous section, another relation is required to eliminate tile new quantities ki, and we can proceed

either by following Schiesel's approach of introducing a new differeutial equation for ki or by forming moments

of the the dynmnic equations in each spectral region.

3.1. Schiestel's method. There are several natural choices to close ki in terms of local turbulence

quantities, each of which will lead to a different model. One natural generalization of Eq. (2.12) to multiple

regions is to set

(3.8) ki = 7nic_il/3n_/3

so that tile ratio ki/t¢i is determined by tile local Kolmogorov frequency.



Schiestel([3],Eq. (24))suggestsinsteadthat hi be determined as the ratio of the flux into the region

ni < n < ni+x divided by the local energy density at _:,. In the present notation, this leads to

(3.9) izi : ? Ei+l (gi) - _/_t_i
_k(i+l

where the choice of El+l, the energy density for scales greater than ni seems to be the most natural.

Substituting Eq. (3.9) in Eq. (3.7) leads to

(3.10) ]_'i= 3ei -7ei-I + _/:_
¢i+1

which can be rearranged as the partial e equatio,l

2

3 el ,p 3 ei-lei 3 e_/:_ ei_ = _,-7( _ - _) +
k_ 2/3 k_

6i+1

., e2/:_
(3.11) _ 3e,__,p 3 ei-lei 3e_'[1+ . ,

-2k_ ' +_7 k_ 2k_ _]
ti+ 1

This result differs slightly from Eq. (25) of [3] because of the final term which modifies the destruction term.

Pi can be neglected except in the regions with small i and Di can be neglected except in the regions with

large i; in the internmdiate regions, the energy content is deternfined by nonlinear energy transfer alone. It

is therefore a reasonable approximation to set Pi = 0 for i _> 2 and Di = 0 for i < n. Then the production of

ei comes primarily from the term proportional to ei-l, the flux into the region _ _> ni from the region n__< hi.

With these approximations, Eq. (3.11) reduces to the transfex equations of the HLS nlodel of Eq.(1.1) except

for the modification noted above of the destruction term.

3.2. The method of moments. As in the derivation of the single-scale model, it can be objected that

the approach of [3] requires some arbitrary choices, like Eq. (3.9). A natural generalization of the method

of moments is to form the partial moment equations

(3.12) _-_ _-_ dt_ n J = ,- d_" --t_ + dt¢ --,_ dt¢ -h:
i_ 1 gi-- i i--I

With the piecewiseKohnogorov forms Eqs. (3.1),(3.2) and (3.3),thisgives

a Fc_._3 ._,/:,,,_._/:, ,C5/:,)] =dt[Wh 5 _ t ,-1 -

z 1/3 1/3(3.13) e_-l__- _i + :_-'Oei4_l/3,(ni-7/:_l -- n_7/3) $2 -- 3uCKtni -- hi-l)
I_i-- 1

where again, _0 = 0. In integrating the delta functions in T/(n), the limits are tzi_ 1 _< t_ < tzi.

The elimination of the quantities _i is straightforward but leads to lengthy expressions. To illustrate the

procedure, consider a two-scale model with partial energies k_, k2 and partial transfers el, e2. Assume that

e2 balances the viscous dissipation so that this model generalizes the usual two-equation model by allowing

transfer and dissipation to be unequal: compare [6].

The partial energy equations are

kl :P_-el -DI

(3.14) ks = P2 + e_ - D._



where in the second equation, integration over a > 31 causes the contributions from e2 to cancel. Introduce

the approximations discussed above,

(3.15)

and to insure the overall energy balance

(3.16)

set

(3.17)

Then Eq. (3.14) becomes

(3.18)

P_Pt

P.2 _O

D_D2

DI ,._ O

J,:l + k.2 = J_"= P- D

D _ (. 2

Effectively, this is a model in which energy transfer through tile large scales and the viscous dissipation can

be unequal. However, the derivation does not require the formation of the moment of order +2.

Since

(3.19)

tile scale ratio _l/tOo can be elinfinated through

k___l= (¢1_2/3[(/_1) 2/3 -- 1]
k.2 k e.2/ t \ tOO/

(3.20)

or

(3.21)

2

3,. e2/3 -2/3
k 2 ---- _t_/.( 2 1

klt__L= {_.) + 1} a/_
/_0

Note that Eq. (3.20) implies that _1 2 too and that Eq. (3.19 implies that 31 = to0 is equivalent to kl = 0.

The relations

2 ._ 2/3 -5/3 . _ 2/3 -5/3.
k-'_l_l -- C_K(:l /_0 n0 + t_K( 1 K 1 _l

(3.22) kl = 5 q

p 2/3 --5/3.

(3.23) ]¢._,: _- : -
e2

(:an be used to eliminate £o and &l.

It is easiest to begin the derivation with the second wavenumber partition. A calculation similar to that

leading to tim single-scale result Eq. (2.26) results in

2 k.2_2 =
(3.24) 5 e2 + k2 (el -- t:2)CTl



where the present theory actually predicts CT1 = 1. Even if this value is left general, in the notation of Eq.

(1.1), this calculation predicts Ct, = Ct2. Eq. (3.24) can be rearranged as

5 _2 (1 -- CTI)(_I -- 6.))
(3.25) i2 = _ k.--_ "

where a small production term proportional to P'2 has been neglected. Note ttlat the production of e2 comes

primarily from el.

Straightforward calculation leads to the el equation

2 kl 4 n0 _ k2 .
--- 1- ]

{5('1 _( _ll fl _2

(3.20) 3-p-(1-C.ro)e, 2(1- a°)(e') -5Cvl _7 - _ _, ,_,-'/:'(1 - 2 J )(_' - _')

Note that the last contrit)ution arises froin the fil term of Eq. (3.22), which is eliminated in terms of e2

through Eq. (3.23).

To summarize, the two-scale model contains the partial energy equations,

]q = P - el

(3.27) ]_2 = el - e,

and the partial dissipation equations,

{2kt 4( _o_ k.2 _.g_, 15 1 - h-_-lj_j, el --
1 2

(3.28) 3p-(1-CTo)e:I, --_(l--_l)(_,,)2/'3(l--_CTt)(el--e2)

(3.29)

with the definition

5 _2

ZI¢2

(3.30) n0a-L= { k_ (_)2/.'_ + i},_/2

This two-scale, four-equation model separates large- and small-scale transfer without requiring Reynolds

number dependent coefficients. Deficiencies of the derivation include the failure to predict C,2 and the

equality Ctl = Ct2 in the small-scale transfer equation Eq. (3.29).

4. Relaxation to the Single-scale Model. Similarity solutions have proven indispensible in cali-

brating turbulence models. Examples include decaying turbulence and spatially self-similar turbulent shear

flows like jets, mixing layers, and wakes. All of these flows were applied to calibrate and validate the first

mixing-length models of turbulence.

_,_ must expect that when applied to a turbulent flow which relaxes to a self-sinfilar evolution, any

nmltiple-scale model must relax to a single-scale model with a unique sinfilarity solution. In particular, the

additional freedom allowed in nmltiple-scale models must not permit spurious results like multiple power-law

exponents in decaying turbulence. Both the HLS model and the proposed model will next be analyzed in

decaying turbulence, and the conditions which prevent the existence of inultiple exponents are found. In

both cases, the condition is a simple inequality among the model constants.



4.1. The HLS model. Considerdecayingturbulencedescribedby theHLSmodelEq. (1.1)with
P = 0. Look for a solution

kp --- apt a

kt = art _

¢'p _- ept °-1

(4.1) et ---- eft a-I

Substituting in Eq. (1.1) leads to a system of homogeneous equations in the constants ap, ac,ep, tit which

has a nontrivial solution provided

(4.2) 0 =

a 0 1 0

0 a -1 1

(_ - 1 0 Cp_ 0

0 (_-1 -Ctl Ct2

= (oeCr., - _ + 1)(o_Cp2a + 1)

The solutions are _t = -1/(Cr,_ - 1) and a = -1/(Cp2 - 1) and the corresponding amplitude ratios are easily

found to t)e

(4.3) ap :at = 0 : 1 if (_ = -1/(Cc2 - 1)
ap : at : Cp2 - Ct2 : Ct2 - Ctl if (*= -1/(Cv) - 1)

The first solution in Eq. (4.3) obviously corresponds to the reduction of the two-scale model to a

single-scale model since kv = 0. To avoid the existence of a second power law in decaying turbulence, the

second solution in Eq. (4.3) nmst be non-realizable or unstable; its non-realizability is assured if one of the

amplitudes av or at must be negative. This occurs if

(4.4) Cv'2 < Cr2 and Ctl < Cc2

The decay equations were integrated for models satisfying and violating the condition Eq. (4.4). The

results are shown in Fig. (4.1). First, the model constants were arbitrarily chosen as Cp2 = 1.5, Ctl =

1.2, Ct2 = 2.0 and the initial conditions were t%(0) = t_t(0) = 0.1,ep(0) = et(O) = 1.0. In this case, Eq.

(4.4) is satisfied. The resulting decay is shown in the left graph in Fig. (4.1). It shows that the energy kp

approaches zero after an initial transient, indicating that at long times, the multiple-scale model reduces to

a single-scale model. The dotted line shows the power law decay t_ _ t-1 expected in this case.

To demonstrate that Eq. (4.4) is needed because the second solution in Eq. (4.3) can be stable, the decay

equations were integrated for a case which does not satisfy the constraint, Cv2 = 3.0, Ctx = 1.2, Ct2 = 2.0.

The results are shown in the center and right-hand graphs in Fig. (4.1). In the center graph, the initial

conditions were t%(0) = 0, t_t(0) = 0.1,ev(0) = 0, et(0) = 1.0 while in the right-hand graph, the initial

conditions were _v(0) = _t(0) = 0.1, ev(0 ) = et(O) = 1.0. Clearly, the power law decay is different in each

case; the dotted line again corresponds to the power law k ,,_ t -_. Thus, if the conditions expressed by Eq.

(4.4) are not satisfied, two distinct time-scaling laws can exist for decaying turbulence.

4.2. The moment model. The analysis for the moment model Eqs. (3.27)-(3.30) is similar. It is

simpler to integrate Eq. (3.13) including the empirical factors in the dissipation rate terms. Substituting

the power-law decay Eq. (4.1) and the additional relations

too = bot -_/'2-1

(4.5) t¢1 = bl t-a/2-1

10
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tqG. ,1.1. decat/ing turbulence HLS model: (left) ('tt < Cp.2 < Cr2 one decay mode; (center) (_tt < Cp2 < (;'t2 two decay

modes; (right) Ct I < (,'re < (Jp2 two decay modes. The center and right figures show the possibility of two diffe_nt power" law

decay rates when the condition in Eq. (_.4 is not satisfied.

in Eq. (3.13),

(4.6)

(4.7)

The consistency of these equations evi(lently requires

CTI 2/3
(4.8) gr,/a _ 1 = _---_:(_ - 1)

br2

_CKc'_/a(bo 5/:' - bT'5/a)(_a + 1)= - _-_)Crt

_Ch-e_/:'b75/a(3,, + 1)-
C1 E. 2

2 bt
CT2

where g = K]/no. The only solution is K = 1 corresponding to nl = n0 provided CT1 <_ CT2 but multit)h _.

solutions are possible once CT1 is large enough relative to CT2. For example, a solution K _ 1.2 exists if

CT2 = 2CT1. Note that if K = 1, then kj = 0, again indicating reduction of the multiple-scale model to a

single-scale model.

In the case that only one solution exists, the power-law decay rate is again

1
(4.9) (x -

C_2 - 1

where

5

(4.10) C_2 = 2(1 - CTI)

indicating the reduction for decaying turbulence to the correct limit.

Examples of decaying turbulence computed with the moment model appear in Fig. (4.2). The initial

conditions are

left graph Fig. (4.2): kl(0) = 0.1 k2(0) = 0.1 q(0) = 1.0 e2(0) = 1.0
(4.11)

right graph Fig. (4.2): kj(0) = 0.15 k2(0) = 0.05 q(0) = 3.0 e_(0) = 1.0

These initial conditions are chosen to correspond to the same initial conditions in a single-scale model,

namely k(0) = kt(0)+ k2(0) = 0.2, e(0) = e2(0) = 1.0. At large times, both calculations follow the same

power law decay, but there are clearly differences in the transient evohltion before self-similarity is obtained.

The decay of the total kinetic energy for the two sets of initial conditions is compared in Fig. (4.3).
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Fx(;. 4.2. decaying turbulence, moment model: (left) initial conditions given by first of Eq. (4.11); (right) initial conditions

given by second of Eq. (4.11). The graphs show the effects of different initial conditions on the decay of isotropie turbulence

predicted by a two-scale model. The different sets of initial conditions correspond to the same initial conditions for a single-scale

model

Although both cases follow the same power law at long times, transient effects cause the energy to decay

more quickly for the second set of initial conditions than for the first set. The capat)ility to model this type

of transient behavior illustrates the justification of Inultil)le-scale modeling;: a single-scale model (:ould not

distinguish I)etween these two cases.

10'

+

_,et 1

time

FIG. 4.3. decaying turbulence, moment model, energy decay for the two sets of initial conditions in Eq. (._.11).

5. Conclusions.

1. The arbitrary elements of the derivation of multiple scale models following [3] can be avoided by the

method of moments, which reduces the continuous spectral evolution equations to a finite dimen-

sional system.

2. The moment equation of order -1 leads to a well defined result, but the moment equation of order

+2 is problematical.

3. However, the moment method leads to difficulties with the destruction of dissipation term both in

12
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.

the single-scale model and in the multiple-scale models. The difficulty originates in the moment of

the transfer integral.

A two scale model in which energy transfer through the large scales can be distinguished from viscous

dissipation can be derived without forming tile problematical moment of order +2.

Multiple-scale models must reduce to single-scale models when the turbulence evolution is self-

similar. Conditions which insure this reduction are derived in the special case of decaying turbulence.

The same analysis should be completed for other self-similar flows.
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